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It has been conjectured for many years that plane Couette flow is stable to 
infinitesimal disturbances although this has never been proved. In  this paper we 
use a, combination of asymptotic analysis and numerical computation to examine 
the associated Orr-Sommerfeld differential problem in a systematic manner. We 
obtain new evidence that the conjecture is, in all probability, correct. In  particu- 
lar we find that, a t  afixed large value of the Reynolds number R, as in an experi- 
ment, if a disturbance of wavenumber a has a damping rate - aci then - ci has a 
minimum value of order R-4 when a is of order R*. We believe that this result 
may be an essential prerequisite to an understanding of the stability of plane 
Couette flow to finite-amplitude disturbances. 

1. Introduction 
Throughout this paper our principal concern is with the stability of plane 

Couette flow to disturbances which are 50 small, ‘infinitesimal’, that we may 
ignore nonlinear effects. This classical problem has been the topic of several 
papers. We quote from Lin (1955); “ . . . no conclusive answer has yet been reached 
concerning this problem even today. All existing investigations tend to show that 
the flow is stable ”. Now plane Couette flow is one of the simplest non-trivial solu- 
tions of the Navier-Stokes equations and it is therefore rather surprising that 
this linear stability problem still poses unanswered questions. We feel that this is 
partly because in the past the problem has not been examined in sufficient detail. 
The eigenvalue c of the associated Orr-Sommerfeld problem is a function of two 
parameters, the wavenumber a and the Reynolds number R, and it is not easy to  
evolve a systematic coverage of the whole a, R plane. We feel that a logical way 
to approach the problem is to suppose that the Reynolds number R has some 
large fixed value and then to examine how the eigenvalue c, and in particular 
its imaginary part ci, varies as a function of a. Almost all the existing literature 
examines how c varies when a is kept fixed and R becomes large and as il conse- 
quence only that region of the a, R plane in which a 4 RJ is examined. It is in 
the above spirit that we shall approach the problem, but let us first review the 
existing literature. 

In  two important papers Wasow (1953) and Grohne (1954) developed similar 
asymptotic theories to show that two-dimensional disturbances of a fixed 
wavenumber a are stable when the Reynolds number R is sufficiently large. 
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This result is not however of primary importance as we shall explain in the next 
section. The first notable numerical attack was made by Gallagher & Mercer 
(1962). They carried out an extensive numerical investigation of the basic two- 
dimensional Orr-Sommerfeld problem for moderate values of a and R such that 
aR was less than about 1000, and indeed found that the flow was stable for this 
parameter range. Their work was substantiated by Deardorff (1963), who calcu- 
lated some higher eigenvalues and extended slightly the parameter range 
covered by Gallagher & Mercer (1962). I n  a later paper Gallagher & Mercer 
(1964) also calculated some higher eigenvalues and they found that a mode-cross- 
ing phenomenon calculated by Grohne (1954) was erroneous. When R is fixed 
and a is so small that aR is less than about 75 the wave propagation speed is 
zero and Dikii (1964) has proved that in this event, when the eigenvalue c is 
purely imaginary, then the flow is stable. I n  another relevant paper Joseph 
(1968) used isoperimetric theory on the Orr-Sommerfeld equation for a general 
velocity profile U(y) to show, by means of some elegant inequalities, that the flow 
is stable when either R < 45.6 or R-$a > 2-2; we shall find the latter result to 
be of particular interest. In  an experiment Reichardt (1956) was able to maintain 
laminar flow for values of the Reynolds number up to about 750; transition to 
turbulence was evident a t  higher values and was presumably due to nonlinear 
effects. 

Our principal objectives are to obtain new evidence that plane Couette flow 
is stable to infinitesimal disturbances and to find, when R is large, the value of a 
for which - ci is a minimum because wavenumbers close to this value may play 
a vital role in the nonlinear stability theory. In  $ 2  we consider in detail the 
classical Orr-Sommerfeld problem for an unmodulated plane wave propagating 
in the direction of the basic flow, especially when the Reynolds number has a 
large fixed value as it would have in a laboratory experiment. Because the prob- 
lem contains two parameters the asymptotic ideas which we present in $ 2  are 
not in themselves sufficient. It is necessary to use numerical calculations both t o  
check and also to reinforce the asymptotic ideas and the novel numerical 
method which we use is presented in $3.  The numerical results are important 
and those of most interest are contained in figure 1, where - ci is plotted against 
a for several different values of R. We conclude the paper with a short discussion 
in $4.  

2. The two-dimensional Orr-Sommerfeld problem 
We consider the flow of a viscous incompressible fluid between two horizontal 

plane walls which are at a distance 2L apart and which move so that the speed 
of the upper plane is U and of the lower plane is - U in the same direction. We 
choose L, U and LIU as characteristic scales of length, speed and time respec- 
tively, with respect to which we make all our quantities non-dimensional. We 
use non-dimensional Cartesian co-ordinates (x, y, z )  where the x axis lies between 
the planes and is in the streamwise direction,the x axis is the upward normal to 
the planes and the y axis is in the spanwise direction to form a right-handed 
system. Thus, the basic flow is in the positive-x direction and the two planes are 
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x = rf: 1; the pressure gradient is zero. Let the fluid have kinematic viscosity v,  
then we define a Reynolds number by 

R = UL/V.  (1) 

Let (u, 0, w) be the non-dimensional perturbation velocity components of a 
two-dimensional disturbance and let 4 be the perturbation stream function so 
that 

u = a$laz, w = -a$px. ( 2 )  

If we substitute ( 2 )  with z added to u in the Navier-Stokes equations, neglect 
second-order quantities in 4,  eliminate the pressure perturbation and seek a 
solution of the form 

(3) 4 = $ ( x )  exp {ia(z - ct)], 

then we find that q+ satisfies the Orr-Sommerfeld equation 

Lllp {D2 - a2 - iaR(2 - c ) }  {Dz - az} llp = 0, (4) 

where D = d/dz. The boundary conditions that the perturbation velocity com- 
ponents are zero at  the plane walls become 

$ = D q + = O  at z = _ + 1 .  (5) 

The differential equation (4) and the boundary conditions (5) are homogeneous 
and so for given values of a and R a non-trivial solution for $ exists only when 
c = c, + ic, is a (complex) eigenvalue. The eigenvalues are discrete and form a 
complete set (DiPrima & Habetler 1969) and they may be ordered in decreasing 
magnitnde of their imaginary part ci. Moreover, Gallagher & Mercer (1964) 
found that this ordering was independent of the values of a and R, so that there 
is no ‘mode-crossing I, contrary to some calculations of Grohne (1954). For paral- 
lel flows the key role played by the Orr-Sommerfeld equation in linear stability 
theory may be rigorously justified by the use of Fourier-Laplace transform theory 
on the governing partial differential equation, but this justification restricts the 
wavenumber a to be real. No mathematical foundation exists a t  present for 
studies in which a is taken to be complex. Hence we suppose that a is a real posi- 
tive wavenumber, so that the temporal damping rate of the disturbance is - aci. 
If ci > 0 the flow is unstable and if ci < 0 then the flow is stable. In  what follows 
we shall concentrate our attention on that eigenvalue which has the largest 
imaginary part since we wish to show that the flow is stable. We have obtained a 
considerable amount of information, both analytically and numerically, about 
the higher-mode eigenvalues but the results are of very little interest compared 
with those presented herein for the least stable mode. 

Now ci is a function of a and R and we wish to obtain some results, which, 
taken together with existing knowledge, indicate that ci is almost certainly 
negative for all values of a and R. There are two main difficulties: first, because 
ci is a function of two parameters our knowledge of the asymptotic dependence 
of ci on a and R is necessarily limited to specific non-overlapping regions in the 
a, R plane; and, second, in those regions of the a, R plane which cannot be covered 
by asymptotic theory the larger a and/or R become the more difficult it is to 

24-2 
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calculate ci accurately by a numerical process. Moreover, a finite number of 
numerical calculations of ci for different values of a and R can never suffice to 
prove that ci < 0 for all values of a and R. Gallagher & Mercer (1962) used a 
finite-difference matrix method to compute ci for values of a up to 8 and R up to 
500 and they found that ci was negative for these ranges of the parameters. They 
also found, however, that - ci decreases without any discernible lower bound 
when R becomes very large. We know from experience that if a laminar flow is 
unstable so that it becomes turbulent then it is most likely to do SO when the 
Reynolds number is large. So we focus attention on the situation when R is large 
and we shall use a combination of asymptotic analysis and numerical computa- 
tion. 

Although ci is a function of both a and R the basic steady laminar flow knows 
only about R and is quite independent of a. Moreover, in an experiment R will 
usually have a large fixed value. Thus, we are firmly of the belief that a logical 
way to approach the problem is to determine how ci varies as a function of a when 
R has some large fixed value. For a flow which is unstable to infinitesimal dis- 
turbances the value of a of most interest will be close to that value which makes 
pi = aci a maximum (Stewartson & Stuart 1971). However, for a flow which is 
stable to infinitesimal disturbances, such as, we believe, plane Couette flow, then 
the value of a of most interest will be close to that value which makes - ci a mini- 
mum (Gill 1971; see appendix to Davey & Nguyen 1971) and so, in particular, we 
shall try to determine whether there is a value of a a t  which - ci is it minimum. 

We begin with an asymptotic analysis similar to that used by Wasow (1953) 
and Grohne (1954)) but which gives a much broader coverage of the a, R plane. 
For the presentation given below it is a pleasure to acknowledge my debt to 
Professor P. H. Roberts. Our hope is that the asymptotic analysis will provide us 
with an essential clue which will tell us what structure to seek in the numerical 
results so that we can make a good guess as to which quantities we should use 
for our ordinate and abscissa in figure I. 

We define A, C and f ( z )  by 
h3 = iaR (argh = in-), (6) 

C = c+ia/R, (7 )  

(8) 

(9) 

fk) = (D2 - a2) $@), 

DY = h3(2 - C)f. 
so that we may write (4) as 

The general solution for $ from (8) which satisfies two of the boundary conditions 
(5)) namely @ = D$ = 0 a t  z = 1, is 

-1 1 

a z  
fr = - 1 sinh a(z - s ) f ( s )  ds. 

The two remaining boundary conditions $ = D$ = 0 a t  z = - 1 become, from 

sinh a( - 1 - s ) f ( s )  ds = 0 s’1 
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Thus we have reduced the original problem to that of solving (9) subject to two 
integral conditions, which, by taking appropriate combinations of (1 1) and (12), 
may be written as 

(13) exp [ k as] f ( s )  ds = 0. s'1 
But (9) is Airy's equation and so 

where C is a suitably chosen contour in a complex-t plane as is usual for the 
Airy functions. So we may write the conditions (13) as 

S1 exp [ a s ] S ,  exp [ ~ ( s  - 2 )  t - i t31 dt ds = 0, (15) 

and we may reverse the order of integration and integrate with respect to s to 
write (15) as 

-1 ' 

sinh (At _+ a) 
exp [ - Act - +PI dt = 0. 

In  the complex-t plane let C,, C, and C3 be contours from co exp [ - $74 to 
co exp [-&-;I, f co to co exp [-#ail, and co exp [$77i] to + co respectively and let 
the corresponding solutions of (9) and (14) be A,( [ ) ,  A , ( t )  and A&), where 
< = h(2-Z); hence A,+A,+A,  = 0, but any two of the functions are indepen- 
dent. For -in < arg [ < in-, A ,  (or Ai in the usual notation) decreases exponen- 
tially like exp [ - @] as -+ co whereas A ,  and A, increase exponentially. 
We follow Wasow (1953), see also Morawetz (1952), and assume that the dis- 
turbance is concentrated near the lowerf- plane wall so that the leading term in 
the asymptotic expansion for c is - I. Thus f ( x )  must decrease rapidly away 
from z = - 1 and we may takef(z) = Ai ([), and C = Cl. 

When ] A ]  $ 1 so that aR is large there are two simple limiting cases which 
we may consider. First we consider the unfamiliar but important case in which 
a $ for the saddle-points over which C, 
passes in the integrals (17), we may replace the denominator in (16) by k a, to 
reduce these conditions, at  leading order, to 

also. Now provided that It/ 4 

A justification for this assumption can be provided a posteriori from the results 
(18) and (19) given below. We shall discuss the error involved in accepting (17) 
later. If we compare (17) with (14) we see that the conditions (17) are simply 
A i  {( & 1 - 6) A)  = 0. The upper sign leads to no new information, since (1 -C) h 
lies in the region where Ai is of exponentially small order. The lower sign requires 

7 The basic flow is an odd function of z so that by taking the complex conjugate of the 
Om-Sommerfeld equation and then changing the sign of z it follows that if c,.+ic, is an 
eigenvalue then so is - c, + ici, the associated disturbance is then concentrated near the 
upper plane wall. 
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that - (1 + C) h coincides with one of the zeros of the Airy function, which are real. 
The most slowly decaying mode is obtained by selecting the largest of these, 
namely -2-3381...  (Miller 1946). The smaller zeros correspond to the higher 
modes which we mentioned earlier, and which are of much less interest. Thus, to 
leading order, we have shown that, for a $- Jhl 9 1, 

2.3381 J3 
c, = - 1 +-- 

(aR)) 2 

(19) 
a 2.3381 1 c .  = - - - - - and 

a R (aR)* 2' 

An alternative method is to note that for this case when a is large conditions 
(13) reduce to f( 1) = 0 and f( - 1) = 0. For the solution which is concentrated 
near z = - 1 the &st condition is satisfied automatically and the second con- 
dition is as given above. Physically f( - 1) = 0 means that the disturbance 
vorticity is small a t  the wall compared with a typical value just away from the 
wall. 

Second, we consider the famiIiar case when ] A [  % 1 and also Ihl >> a as studied 
by Wasow and Grohne. We may now write the lower-sign case of conditions (16), 
a t  leading order, as 

n 

the plus-sign condition gives no new information. We shall discuss the error 
involved in accepting (20) later. Moreover, (20) is just 

Ai([)d[ = 0. 
-(l+E)h 

We have used the numerical method described in $ 3  to calculate the value of 
- (1 +Z)h which satisfies (21) for the least stable mode directly from the Orr- 
Sommerfeld equation, and apart from the error term, for Ihl >> a we find that 

and 

Similar values for the coefficients of (aR)-+ in (22) and (23) were obtained by 
Zondek & Thomas (1953) in their study of a limiting case of plane Couette flow 
when one boundary is a t  infinity. Alternatively, we may note that when Ihl >> a 
the exponential terms in (13) do not vary as rapidly asf(s) grows or decays. There- 
fore both conditions (13) give 

/ ) ( B ) d S  = 0,  (24) 

or, for the solution which is concentrated near z = - 1, 

Ai {h(x - C)} dz = 0. 
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However, the upper limit in (25) may be replaced by 00 since the integrand is of 
order exp [ -@] even when z is near 1, and so (25) is equivalent to (21). The 
essence of (24) physically is that there is only a little streamwise flux of disturbance 
vorticity . 

Of the results obtained above the two of principal interest are (19) and (23). 
Amore detailed analytical investigation indicates that when R is fixed and a B R* 
then the error involved in (19) is of order a-8 and when CI. is fixed and Ri 9 a 
the error involved in (23) is of order R-3. Moreover these results have been very 
carefully checked by a detailed numerical investigation of (4) and ( 5 )  for values 
of a up to 100 and values of aR up to 100 000 by use of the method described in 3 3. 
So when R is large and a is not too small we may summarize the situation as fol- 
lows: let X = R-~CI. and Y = - Rtc, then for X large 

where r0 = 1.0625 and rl = 1.1691. When a and R4 are of the same order of 
magnitude, so that X is neither large nor small, it is then difficult to make use 
of the integral conditions (16). In  this case all the terms in the Orr-Sommerfeld 
equation (4) are of the same order of magnitude in the critical layer of the 
disturbance. To cover this parameter range we must embark upon a little specu- 
lation and we choose this in such a way that it may be either verified or found 
wanting by a numerical check. 

We return to our original question and ask whether, when R is large, there is a 
value of a such that -ci is a minimum. Now the similarity in form of (26) and 
(27) and the closeness of the constants r0 and rl suggests the possibility that for 
large values of R and a not too small then 

Y = x + r(x) x--+, (28) 

where r ( X )  is a slowly varying function of X whose value remains close to r0 
and rl. We now use (28), albeit tentatively, to obtain a clue which will tell us 
what structure to look far in the numerical results. If we keep R fixed and differen- 
tiate (28) with respect to a, ignoring the slow variation of r ( X )  as a varies, and 
put acilaa = 0 we find that -ci has a minimum when a is of order Ri. To test 
this idea numerically we take several large fixed values of R and, for each value 
separately, compute c directly from (4) and (5) for a wide range of values of a and 
plot Y = - R*ci against X = R-*a. 

Some of the results which we have obtained are as shown in figure 1. The 
most important feature is that for values of R >, 200 (and a not too small) all 
the results collapse onto the same line, which is shown as an unbroken curve in 
figure 1. The position of this curve was checked for values of a and aR as large 
as 100 and 100000 respectively. It is just this feature which justifies our conjec- 
tural use of (as), for if - ci had been a minimum when a was proportional to some 
power of R other than R* the results for R 2 200 would not lie on the same line. 
From this line we may readily calculate r ( X )  and verify that it does vary slowly: 
as X increases from zero r ( X )  increases from ro and attains a maximum value of 
1.38 near X = 0.3; as X becomes larger r ( X )  decreases and approaches rl from 
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1.50 1 i 
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1.25 I I I 1 I i I 1 I I 1 I 
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X=R-*a 

FIGURE 1.Plotof Y = -R*c,againstX = R-*a; theunbrokenlinemaybeusedforR 2 200. 
The point X = 0.6321, Y = 2.1772 gives the minimum value of -ci for R >, 200. For com- 
parison the curves for R = 25 and R = 50 are shown by broken lines; to the left of the dots 
on these curves a < (xo and the disturbance takes the form of a standing wave. The dotted 
curves represent the leading terms of the asymptotic solutions with To = 1.0625 and 
rl == 1.1691. 

above. For R 3 200, - ci is a minimum when a = 0.6321 R*, a t  which value of a 
- ci = 2-1772R-+; we note the proximity to the minimum of the result of Joseph 
(1968) that the flow is stable if R-$a > 2-2 = 0.5946. 

In  figure I for all values of R the separate curves soon coalesce on the right- 
hand side of the minimum and when a + Rg then - c i  increases as a becomes 
larger and approaches the value afR from above. On the left-hand side of the 
minimum the smaller values of R peel off upwards as a decreases. When a 
becomes so small that aR is no longer large - ci continues t o  increase until the 
disturbance takes the form of a standing wave. This occurs when a < a,, where 
a, is approximately 7548R-1 (see figure 2 of Gallagher & Mercer 1962); at  
a = a, there is EL cusp. When a < a, then -ci does have another minimum but 
this is larger than the minimum for a > a, when R > 72.3. Our numerical calcula- 
tions indicate that -pi = - aci always has its minimum value when a lies in the 
range 0 < a < a*, and for this range Dikii (1964) has proved that -pi > a2/R; 
when a is very small -pi R tends to n2. Values of - ci when a < a, are not shown 
in figure I and a = a. at the dots on the left-hand ends of the broken curves for 
R = 25 and 50. We have done calculations for a much wider range of values of a 
and R than those shown in figure I and we have also investigated the higher 
modes but the corresponding results are simply of no interest compared with 
those shown in figure 1. In  fact figure 1 covers quite a wide range anyway for if, 
say, R = 1000 then the range of a covered is approximately 1.7 < a < 73. 



Stability of plane Couette flow 377 

It is of interest to note that, at least in retrospect, the ‘core’ of the problem 
may be obtained without having to do any calculations for values of R larger 
than a few hundred. That the important values of a are probably of order Ri 
might be expected from the following simple physical argument. If members of 
a set ’ of disturbances all have the same energy E N u2 + w2 then our knowledge 
of turbulence tells us that it will be just those members of the set with u N w 
which will be most likely to tempt a laminar flow to become turbulent, The 
continuity equation indicates that if u N w then a/& N a/az, but a/ax - a and in 
the critical layer a/ax N (aR)*, so that a N (aR)) and therefore a N R3. 

3. The numerical method 
The problem defined by (4) and (5) is difficult to solve numerically when 

either a or aR is large because then the characteristic values of the Orr-Sommer- 
feld differential operator L differ greatly in their real parts. The viscous comple- 
mentary solutions dominate the inviscid ones and make it difficult to determine 
what linear combination of the individual solutions will satisfy the boundary 
conditions. We wish to calculate the principal eigenvalue c for as many different 
values of a and R as possible in the ranges 0 Q a Q 100 and 0 Q aR Q 100000, 
and to reduce the necessary computing time to a minimum with the proviso 
that a simple method may be used. 

A powerful and efficient method available for solving two-point boundary- 
value problems is the parallel shooting procedure as developed by Keller (1968). 
This excellent method is a cross between matrix methods and marching or 
shooting methods; it combines the advantages of both methods and eliminates 
most of their disadvantages. A simple special case of Keller’s procedure is the 
method of orthonormalization. We have used this method in a novel form of 
‘ complete ’ orthonormalization, which is especially simple to use, to obtain 
not only the results shown in figure 1 but also many others in support of the 
content of this paper. We now give a brief,t but essentially complete, descrip- 
tion of the method. (The description given in Davey & Nguyen (1971) is not 
complete and should be ignored.) 

We shall use Runge-Kutta integration over the range - 1 < x < 1 and choose 
say rn steps of equal length h = 21%. We assume that the required eigenvalue c 
is already known approximately, if not then it will be necessary to do a little 
preliminary work using a variational or matrix type of method as has been well 
explained by Lee & Reynolds (1967). Let y = {$, D$, D2$, D3$} so that for 
each value of z the corresponding element y belongs to a four-dimensional vector 
space. Now suppose that when z = ih then y = yi and consider integration, 
using a specific routine, from z = ih to z = (i + 1)h. Then the value yi+l of y 
at x = (i+ l)h will be given by 

where Ad is a 4 x 4 matrix whose elements will be independent of yi because L 
is a linear operator; but they will depend upon the current value of c. We may 

t For an exhaustive account of orthonormalization methods see Davey (1973). 

Yi+l  = AiYi’ (29) 
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determine Ai by letting yi have separately the values (1, 0, 0, 01, {0,  1, 0, 0)) 
(0, 0, 1, 0) and (0, 0, 0, 1) and integrating from x = ih to x = (i + 1) h. So for each 
of the m integration steps we may find the corresponding m transfer matrices A(. 
It is just because we find these transfer matrices as described above that our 
orthonormalization may be said to be complete. 

The relationship between y a t  z = - I and y a t  z = 1 is of the form 

where B is the 4 x 4 matrix which is the left-product of all the transfer matrices 
Ai. If the real parts of the characteristic values of L are not greatly different, so 
that R is not too large, then B may be found directly by straightforward shoot- 
ing and the transfer matrices need not be found individually. The reason for this 
is that four integrations starting with four orthonormal values of y a t  z = - 1 
will be such that the four corresponding values of yi a t  the end of every integra- 
tion step will still be ‘good ’ linearly independent vectors. By ‘good’ here we mean 
that the vectors shall still be nearly orthonormal. If, however, R is so large that 
the characteristic values of L are greatly different then round-off errors accom- 
panied by the most rapidly growing solution will malform B and we shall not 
be able to calculate B with sufficient accuracy by straightforward shooting. 
What has happened is that, by the time we have integrated halfway across (say), 
if the four values are B1y2=_,, where B = B2B1, then the vectors B1y2=-, 
will be so nearly parallel that, computationally, they will form too poor a base 
from which to determine B2 accurately. 

Instead we must proceed as follows: let the number of integration steps be 
m = pq, where p and q are both integers with q large and fixed and usually with 
p small although the larger OL or R become the larger p ,  and so also m, must be 
made. As a general rule we may take say q = 100 and p a small multiple of the 
largest characteristic value, the actual multiple depending upon the accuracy 
required. (For plane Couette flow the characteristic values are of order OL and 
(aR)*.) The first stage is to calculate the products in blocks of q of the transfer 
matrices A+ by integrating over blocks of q steps using orthonormal initial values; 
it is not necessary to find each Ad individually unless a fine tabulation of the 
eigenfunction is required. Let the p matrices so obtained be called B1,B2, 
B3, ..., Bp such that B1 is the left-product of the first q matrices Ai and B2 is 
the left-product of the next q matrices Ai and so forth. Equivalently we may 
think of the range of integration as being divided into only p steps which may 
themselves be subdivided but only for the specific purpose of using the Runge- 
Kutta routine. 

The second stage is to left-multiply the matrices Bi, 1 6 j 6 p ,  together in a 
special way to obtain accurately some key information about the full transfer 
matrix 

B = BpBp- l ... B2B1. (31) 

Now the boundary conditions (5) tell us that the eigenvalue c must be iterated 
upon until the determinant of the upper right-hand quarter of B is zero. This 
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is because the first two components of both yg=--l and yz=l are zero, so that 
equation (30) is of the form 

:\ i!). (32) 

X x i .  F\ = i.....................~........................... x i .  

So we calculate this determinant accurately as follows: we add a multiple of the 
third column of B1 to the fourth column so that these columns become orthgonal; 
we then normalize every column and left-multiply by B2. Let the new matrix 
so obtained be called C. We now repeat this process on C so that the last two 
columns are made orthogonal in the same way and then every column is normal- 
ized. Next, we left-multiply this new C by B3 and repeat the process to form 
another C and so forth until the multiplication by Bp and a final use of the process 
have been completed. Thus, the h a 1  matrix C will be a modification of B such 
that its last two columns are orthonormal and such that the determinant, or rather 
the singularness, of the upper right-hand quarter is essentially unchanged. This 
part of the matrix is now well-formed and we may use any standard iterative 
technique to adjust c until this determinant is sufficiently close to zero; the 
matrices Bj must of course be recalculated each time that c is changed in the 
iteration procedure. 

The above method may be readily adapted for other similar problems of higher 
differential order. For an nth-order differential system the main difference is 
that the matrices will be n x n instead of 4 x 4. The boundary conditions will 
determine how best to define the components of y so that part of B should have a 
zero determinant, and thus also which columns should be made orthogonal. It 
is usually only necessary for the numberp of orthonormalizations to be very small; 
for (4) and (5) with a fixed the Reynolds number may be approximately quad- 
rupled each time that p is doubled. What is essential is that the solid which may 
be defined by the column (or row) vectors of the transfer matrix between two 
successive orthonormalization points shall not differ markedly from a cube. The 
integration steps may each be of different length without introducing any com- 
plication, also the integration may be over any range and in either direction. 

4. Concluding remarks 
We have examined the principal eigenvalue c of the two-dimensional On-  

Sommerfeld problem for plane Couette flow over a wide range of values of the 
wavenumber a and the Reynolds number R. Specifically we have investigated 
how c varies with a when R has a large fixed value, and to do this we have used 
a delicate combination of asymptotic analysis and numerical computation. 
Our main aim has been to find the value of a a t  which - ci is a minimum because 
the neighbourhood of this wavenumber is probably important as regards the 
stability of plane Couette flow to small- but finite-amplitude disturbances in 
contrast to flows which are unstable to infinitesimal disturbances when the 
important values of a are those near which aci is a maximum. We have also 
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obtained new evidence that plane Couette flow is stable to infinitesimal distur- 
bances. 

When a B R* we have found that -ci is positive and increases as a becomes 
larger and - ci > a/R. When a is smaller but of order R* then - ci has its smallest 
value (provided R > 72.3)  of about 2.2R-4 when a is about 0*63R+. As a decreases 
so that a < R* then -ci increases until a becomes so small that c: = 0 and the 
disturbance takes the form of a standing wave. 

We note that Squire’s (1 933) theorem is valid and so the propagation of an 
oblique wave poses the same eigenvalue problem as a two-dimensional wave 
at  a lower value of the Reynolds number. Therefore - ci will be bounded below 
by a larger number than if the wave were two-dimensional because the minimum 
value of - ci is of order R-5. 

Ideas similar to those presented in this paper may be used to show that in the 
corresponding stability problem for flow in a circular pipe when R is large - ci has 
a minimum value of order R-8 when the axial wavenumber is of order Rg whether 
or not the disturbance is axisymmetric. 

I am greatly indebted to Professor P. H. Roberts for his help with the asymp- 
totic analysis contained in 9 2 ;  my thanks go also to Dr D. Schofield for several 
valuable discussions. 
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